
Access Control

Jackson Argo

Rackspace MO After-hours

April 28, 2016

What is Access Control?

How Is Access Determined?

Who Determines Access?

Forms of Access Control
SELinux Booleans
iptables
File Access Control Lists
Apache Access Control
Linux Groups

Access Control in the Kernel
Namespaces
Control Groups
Containers

What is Access Control?

I Access control is answering the question: Who can access
what?

I Our every day life relies on access control in many ways:
I We choose which thoughts that we want to share.
I We carry an id so that we can buy alcohol.
I The 2nd amendment guarantees us access to firearms.

Access Control in Linux

Unsurprisingly, Linux relies on access control as well.
I The kernel protects memory space so that programs can’t

inhibit one another.
I Regular users cannot arbitrarily overwrite the root filesystem.
I Apache blocks access to xmlrpc.php so people can run

Wordpress sites.

How Is Access Determined?

Before we can implement access control, we need to have a reliable
way to determine whether access can be permitted. Valid access
control requires the following:

I There must be a non-biased mechanism used to test for
access.

I The mechanism must be sure that the user cannot be spoofed
or impersonated.

I The user must be able to activate this mechanism.
I The user must be sure that the mechanism cannot be spoofed

or impersonated.
I The result must be enforced by the operating system.

Trust

Like all of security, access control relies on trust. If you use a
mechanism for access control, then you inherently trust that the
mechanism will work properly.

Who Determines Access?

Someone has to determine access control and security of different
objects, whether it is an automated program or a user, i.e. Who
has access to control access control?

There are two main approaches:
I Discretionary - Any user may be involved in the definition on

the policy function and/or assignment of security attributes.
This places the burden of security on the user. E.x. file
permissions, Facebook posts, 5th amendment.

I Mandatory - Policy functions and security attributes are
tightly controlled by the system administrator. This places the
burden of security on the administrator. E.x. SELinux,
firewalls, sudoers.

Discretionary Access Control Gotchas

I I want to re-emphasize that discretionary access control
places the burden of security on the user.

I This means that our customers need to have a good
understanding of what needs to be protected and what
doesn’t.

I Our customers are our customers because they do not
necessarily have a good understanding of this.

I It follows that WE have to be extra vigilant in checking that
things like file permissions are sane and will not compromise
the server.

I We should also educate our customers when they are doing
something wrong.

Forms of Access Control

In Linux, the mechanism for access control typically checks the
user against predetermined set of criteria.

These criteria look like:
I Simple Yes/No Rules
I Access Control Lists (ACL’s)
I Role Based Access Control (RBAC)

Forms of Access Control

Here are some common ways we see access control in daily life
that are not particularly common in Linux:

I Attribute Based Access Control (ABAC) - This is a more
general form of RBAC. Instead of checking for only a list of
roles, you can check any key attribute for any value.

I Time Based Access Control (TBAC) - Access is only granted
during specific times, e.x. department store hours of
operation.

I History Based Access Control (HBAC) - Access is granted
based on a history of activities. fail2ban uses this type of
access control.

Simple Yes/No Rules

I Yes/No/Pass/Fail rules are the simplest way to determine
access, and all forms of access control can be generalized to
these rules.

I Examples:
I [$(id -u) = 0] || exit 1
I SELinux booleans

Example: SELinux Booleans

curl -sI localhost | awk /HTTP/
HTTP/1.1 403 Forbidden
tail -n1 /var/log/httpd/error_log
... (13)Permission denied...
ls -lZ /var/www/html/index.html
-rwxr-xr-x. root root system_u:object_r:nfs_t:s0

/var/www/html/index.html
awk ’/var\/www/ { print $1, $2, $3 }’ /etc/mtab
127.0.0.1:/srv/nfs/www/html /var/www/html nfs4
getsebool -a | awk ’/httpd/ && /nfs/’
httpd_use_nfs --> off
setsebool -P httpd_use_nfs on
getsebool -a | awk ’/httpd_use_nfs/’
httpd_use_nfs --> on
curl -sI localhost | awk /HTTP/
HTTP/1.1 200 OK

Access Control Lists

I ACL’s can be thought of as a chain or flow chart of
standardized yes/no rules. The agent will be checked against
all the rules until the chain is terminated by a final yes or no.

I Examples:
I iptables rules
I File ACLS
I Apache access control

iptables

First, we define our iptables chains:

*filter
:INPUT ACCEPT [0:0] # Default input chain
:FORWARD ACCEPT [0:0] # Default forward chain
:OUTPUT ACCEPT [0:0] # Default output chain
:IN_PRIVATE - [0:0] # Input from cloud network
:IN_PUBLIC - [0:0] # Input from the public interface
:IN_SERVICENET - [0:0] # Input from servicenet

iptables

Next, we define the rules for each chain:

-A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
-A INPUT -i eth0 -j IN_PUBLIC
-A INPUT -i eth1 -j IN_SERVICENET
-A INPUT -i eth2 -j IN_PRIVATE
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited
-A IN_PRIVATE -j ACCEPT
-A IN_PUBLIC -p tcp -m tcp --dport 22 -j ACCEPT
-A IN_SERVICENET -p tcp -m tcp --dport 22 -j ACCEPT
-A IN_SERVICENET -p tcp -m tcp --dport 80 -j ACCEPT

iptables

Now we can check our firewall settings. I ran these commands
from bastion:

$ head -n0 < /dev/tcp/104.239.175.131/22
$ head -n0 < /dev/tcp/104.239.175.131/80
-bash: connect: No route to host
-bash: /dev/tcp/104.239.175.131/80: No route to host
$ head -n0 < /dev/tcp/10.209.66.22/22
$ head -n0 < /dev/tcp/10.209.66.22/80
$ head -n0 < /dev/tcp/10.209.66.22/111
-bash: connect: No route to host
-bash: /dev/tcp/10.209.66.22/111: No route to host

File Access Control Lists

cd /var/www/html
curl -s https://wordpress.org/latest.tar.gz | tar xz
curl -sI localhost/wordpress/ | awk /HTTP/
HTTP/1.1 200 OK
ls -l wordpress/index.php
-rw-r--r--. 1 nobody nfsnobody 418 Sep 24 2013

wordpress/index.php
chown -R jpeaches:jpeaches wordpress/
find wordpress/ -type d -exec chmod 700 {} \+
find wordpress/ -type f -exec chmod 600 {} \+
curl -sI localhost/wordpress/ | awk /HTTP/
HTTP/1.1 403 Forbidden
setfacl -R -m u:apache:rX wordpress/
setfacl -R -m default:u:apache:rX wordpress/
curl -sI localhost/wordpress/ | awk /HTTP/
HTTP/1.1 200 OK

File Access Control Lists

sudo -u wpftp touch wordpress/index.php
touch: cannot touch ’wordpress/index.php’: Permission denied
setfacl -R -m u:wpftp:rwX wordpress/
setfacl -R -m default:u:wpftp:rwX wordpress/
sudo -u wpftp touch wordpress/index.php
ls -l wordpress/index.php
-rw-rw----+ 1 jpeaches jpeaches 418 Apr 18 04:06

wordpress/index.php
sudo -u wpftp touch wordpress/newfile
getfacl wordpress/newfile | awk "/^user:(apache|wpftp)/"
user:apache:r-x #effective:r--
user:wpftp:rwx #effective:rw-
sudo -u jpeaches touch wordpress/newfile
touch: cannot touch ’wordpress/newfile’: Permission denied
setfacl -R -m u:jpeaches:rwX wordpress/
setfacl -R -m default:u:jpeaches:rwX wordpress/
sudo -u jpeaches touch wordpress/newfile

File Access Control Lists

getfacl wordpress | awk ’!/^(#|$)/’
user::rwx
user:apache:r-x
user:jpeaches:rwx
user:wpftp:rwx
group::---
mask::rwx
other::---
default:user::rwx
default:user:apache:r-x
default:user:jpeaches:rwx
default:user:wpftp:rwx
default:group::---
default:mask::rwx
default:other::---

Apache Access Control

AuthType Basic
AuthName "Restricted Access"
AuthUserFile "/etc/httpd/passwd/passwords"
<RequireAll>

Require user jpeaches
<RequireAny>

Require ip ::1 127.0.0.1
Require host localhost

</RequireAny>
</RequireAll>

Apache Access Control

mkdir /etc/httpd/passwd/
chown apache:apache /etc/httpd/passwd/
chmod 700 /etc/httpd/passwd/
awk -F: -v OFS=: ’/^jpeaches/ { print $1, $2 }’ /etc/shadow >

/etc/httpd/passwd/passwords
htpasswd -b /etc/httpd/passwd/passwords wpftp ILovePeaches
chown apache:apache /etc/httpd/passwd/passwords
chmod 600 /etc/httpd/passwd/passwords

Apache Access Control

curl -sI localhost/wordpress/ -u jpeaches:ILovePeaches | awk
/HTTP/

HTTP/1.1 200 OK
curl -sI 127.0.0.1/wordpress/ -u jpeaches:ILovePeaches | awk

/HTTP/
HTTP/1.1 200 OK
curl -sg6 -I [::1]/wordpress/ -u jpeaches:ILovePeaches | awk

/HTTP/
HTTP/1.1 200 OK
curl -sI 104.239.175.131/wordpress/ -u jpeaches:ILovePeaches |

awk /HTTP/
HTTP/1.1 403 Forbidden

Apache Access Control

<Directory "/www/mydocs">
<RequireAll>

<RequireAny>
Require user superadmin
<RequireAll>

Require group admins
Require ldap-group cn=Administrators,o=Airius
<RequireAny>

Require group sales
Require ldap-attribute dept="sales"

</RequireAny>
</RequireAll>

</RequireAny>
<RequireNone>

Require group temps
Require ldap-group cn=Temporary Employees,o=Airius

</RequireNone>
</RequireAll>

</Directory>

Role Based Access Control

Users are assigned roles, and objects have particular roles that are
allowed to access them. These roles are often hierarchical, e.x. full
admin > network admin > firewall admin.
Examples:

I Linux groups
I Rackspace Cloud RBAC
I Rackspace internal roles

Linux Groups

When used in conjunction with sudo, Linux groups are a nice user
abstraction that can be extended beyond simple file level access
control.
We can use /etc/sudoers to create a firewall-admin group that
can:

I Add and remove entries to /etc/hosts.
I Check what process are listening on open ports.
I Manage network interfaces and routes.
I View/update the firewall.

Linux Groups

Here is our sudoers file:

Cmnd_Alias FIREWALLADM = /usr/sbin/ip, /usr/sbin/iptables,
/usr/bin/netstat

Defaults always_set_home
Defaults env_reset
Defaults secure_path = /sbin:/bin:/usr/sbin:/usr/bin
root ALL=(ALL) ALL
%firewall-admin ALL = (root) NOPASSWD: FIREWALLADM

Linux Groups

Now we put the firewall-admin group to use:

groupadd
gpasswd -a jpeaches firewall-admin
su jpeaches
$ iptables -L
iptables v1.4.21: can’t initialize iptables table ’filter’:

Permission denied (you must be root)
Perhaps iptables or your kernel needs to be upgraded.
$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- anywhere anywhere ctstate

RELATED,ESTABLISHED
$ sudo echo hello
[sudo] password for jpeaches:
Sorry, user jpeaches is not allowed to execute ’/bin/echo hello’

as root on jack8684-acbrownbag.

Access Control in the Kernel

In each form of access control we’ve discussed so far, the kernel is
the decider and enforcer. The kernel ultimately decides who has
has access to what, and it follows that we should be able to
completely isolate a process’s access to objects through the kernel
alone. There are two kernel features that give us this power:

I Namespaces - Isolates a process’s virtual resources.
I Control Groups - Restricts access to hardware resources.

Namespaces

I Think of namespaces as an abstraction of chroots. Instead of
just files, we can restrict network interfaces, pid’s, users, and
more.

I A namespace wraps a global system resource in an abstraction
that makes it appear to the processes within the namespace
that they have their own isolated instance of the global
resource.

I Changes to the global resource are visible to other processes
that are members of the namespace, but are invisible to other
processes.

I One use of namespaces is to implement containers.

Types of Namespaces

There are 6 types of namespaces:
I Mount - Essentially a much stronger form of the classic

chroot.
I Network - The namespace gets it’s own virtual interface, and

cannot see any other interface. Processes can attach to any
ports on that interface without interfering with the
portmapping outside the namespace.

I PID - The namespace gets it’s own process list. The first
process in the namespace will have pid 1.

Types of Namespaces

I User - Similarly, the namespace gets it’s own user list. A user
inside the namespace can have the same uid as another user
outside the namespace.

I UTS - Let’s you set hostname and domain name for a
namespace.

I IPC (Interprocess Communication Mechanisms) - Isolates
message queues, semaphore sets, and shared memory
segments.

Control Groups

I Think of control groups as an abstraction on nice. Instead of
only limiting CPU priority, we put limits on pretty much every
way a process will interact with the hardware.

I There is a LOT of control we as system administrators have
over cgroups, and I could dedicate an entire brown bag on
how these work and how we can use them.

I Fedora has some pretty thorough documentation on this in
their Resource Management Guide.

https://docs.fedoraproject.org/en-US/Fedora/17/html/Resource_Management_Guide/index.html

Types of Control Groups

I blkio — this subsystem sets limits on input/output access to
and from block devices such as physical drives (disk, solid
state, USB, etc.).

I cpu — this subsystem uses the scheduler to provide cgroup
tasks access to the CPU.

I cpuacct — this subsystem generates automatic reports on
CPU resources used by tasks in a cgroup.

I cpuset — this subsystem assigns individual CPU’s (on a
multi-core system) and memory nodes to tasks in a cgroup.

I devices — this subsystem allows or denies access to devices
by tasks in a cgroup.

Types of Control Groups

I freezer — this subsystem suspends or resumes tasks in a
cgroup.

I memory — this subsystem sets limits on memory use by
tasks in a cgroup, and generates automatic reports on
memory resources used by those tasks.

I net_cls — this subsystem tags network packets with a class
identifier (classid) that allows the Linux traffic controller (tc)
to identify packets originating from a particular cgroup task.

I net_prio — this subsystem provides a way to dynamically set
the priority of network traffic per network interface.

I ns — the namespace subsystem.

Containers

I We have all of these cool access control tools like
namespaces, control groups, and SELinux policies, but how to
we leverage them together?

I Linux Containers burrito all of these features to give us very
strong process isolation (https://linuxcontainers.org/).

I This is the backbone of our favorite tool, Docker.

https://linuxcontainers.org/
http://www.docker.com/

END

Questions? Comments? Concerns? Food?

Contribute!

https://github.com/jacksonargo/access-control-presentation

	What is Access Control?
	How Is Access Determined?
	Who Determines Access?
	Forms of Access Control
	SELinux Booleans
	iptables
	File Access Control Lists
	Apache Access Control
	Linux Groups

	Access Control in the Kernel
	Namespaces
	Control Groups
	Containers

